Bültmann & Gerriets
Optimization with Multivalued Mappings
Theory, Applications and Algorithms
von Vyacheslav Kalashnikov, Stephan Dempe
Verlag: Springer US
Reihe: Springer Optimization and Its Applications Nr. 2
Hardcover
ISBN: 978-1-4419-4167-1
Auflage: Softcover reprint of hardcover 1st ed. 2006
Erschienen am 29.11.2010
Sprache: Englisch
Format: 229 mm [H] x 152 mm [B] x 16 mm [T]
Gewicht: 421 Gramm
Umfang: 288 Seiten

Preis: 106,99 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 23. November.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Klappentext

Preface.- PART I. BILEVEL PROGRAMMING.- Optimality conditions for bilevel programming problems (Stephan Dempe, Vyatcheslav V. Kalashnikov and Nataliya Kalashnykova).- Path-based formulations of a bilevel toll setting problem (Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard).- Bilevel programming with convex lower level problems (Joydeep Dutta and Stephan Dempe).- Optimality criteria for bilevel programming problems using the radial subdifferential (D. Fanghänel).- On approximate mixed Nash equilibria and average marginal functions for two-stage three-players games (Lina Mallozzi and Jacqueline Morgan).- PART II. MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS.- A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints (Michael L. Flegel and Christian Kanzow).- On the use of bilevel programming for solving a structural optimization problem with discrete variables (Joaquim J. Júdice, Ana M. Faustino, Isabel M. Ribeiro and A. Serra Neves).- On the control of an evolutionary equilibrium in micromagnetics (Michal Kocvara, Martin Kruzík, Jirí V. Outrata).- Complementarity constraints as nonlinear equations: Theory and numerical experience (Sven Leyffer).- A semi-infinite approach to design centering (Oliver Stein).- PART III. SET-VALUED OPTIMIZATION.- Contraction mapping fixed point algorithms for solving multivalued mixed variational inequalities (Pham Ngoc Anh and Le Dung Muu).- Optimality conditions for a d.c. set-valued problem via the extremal principle (N. Gadhi).- First and second order optimality conditions in set optimization (V. Kalashnikov, B. Jadamba, A.A. Khan).



In the field of nondifferentiable nonconvex optimization, one of the most intensely investigated areas is that of optimization problems involving multivalued mappings in constraints or as the objective function. This book focuses on the tremendous development in the field that has taken place since the publication of the most recent volumes on the subject. The new topics studied include the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the coderivative of Mordukhovich), the opening of new applications (e.g., the calibration of water supply systems), or the elaboration of new solution algorithms (e.g., smoothing methods).
The book is divided into three parts. The focus in the first part is on bilevel programming. The chapters in the second part contain investigations of mathematical programs with equilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems.


andere Formate
weitere Titel der Reihe