Bültmann & Gerriets
High Performance Computing for Big Data
Methodologies and Applications
von Chao Wang
Verlag: Taylor & Francis
E-Book / EPUB
Kopierschutz: Adobe DRM


Speicherplatz: 11 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-351-65157-8
Erschienen am 16.10.2017
Sprache: Englisch
Umfang: 286 Seiten

Preis: 61,99 €

Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book presents state-of-the-art research, methodologies, and applications of high performance computing for big data applications. It covers fundamental issues in Big Data research, including emerging architectures for data-intensive applications, novel analytical strategies to boost data processing, and cutting-edge applications.



Prof. Chao Wang received B.S. and Ph.D. degrees from School of Computer Science, University of Science and Technology of China, in 2006 and 2011 respectively. He has been a postdoctoral researcher in USTC from 2011 to 2013. He also worked with Infineon Technologies A.G. in 2007-2008. He is the associate editor of Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics.



Section I Big Data Architectures

Chapter 1 ¿ Dataflow Model for Cloud Computing Frameworks in Big Data

Dong Dai, Yong Chen, and Gangyong Jia

Chapter 2 ¿ Design of a Processor Core Customized for Stencil Computation

Youyang Zhang, Yanhua Li, and Youhui Zhang

Chapter 3 ¿ Electromigration Alleviation Techniques for 3D Integrated Circuits

Yuanqing Cheng, Aida Todri-Sanial, Alberto Bosio, Luigi Dilillo, Patrick Girard, Arnaud Virazel, Pascal Vivet, and Marc Belleville

Chapter 4 ¿ A 3D Hybrid Cache Design for CMP Architecture for Data-Intensive Applications

Ing-Chao Lin, Jeng-Nian Chiou, and Yun-Kae Law

Section II Emerging Big Data Applications

Chapter 5 ¿ Matrix Factorization for Drug-Target Interaction Prediction

Yong Liu, Min Wu, Xiao-Li Li, and Peilin Zhao

Chapter 6 ¿ Overview of Neural Network Accelerators

Yuntao Lu, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 7 ¿ Acceleration for Recommendation Algorithms in Data Mining

Chongchong Xu, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 8 ¿ Deep Learning Accelerators

Yangyang Zhao, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 9 ¿ Recent Advances for Neural Networks Accelerators and Optimizations

Fan Sun, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 10 ¿ Accelerators for Clustering Applications in Machine Learning

Yiwei Zhang, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 11 ¿ Accelerators for Classification Algorithms in Machine Learning

Shiming Lei, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 12 ¿ Accelerators for Big Data Genome Sequencing

Haijie Fang, Chao Wang, Shiming Lei, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou


andere Formate