Bültmann & Gerriets
High Performance Computing for Big Data
Methodologies and Applications
von Chao Wang
Verlag: Taylor & Francis Ltd (Sales)
Gebundene Ausgabe
ISBN: 978-1-4987-8399-6
Erschienen am 10.10.2017
Sprache: Englisch
Format: 257 mm [H] x 185 mm [B] x 20 mm [T]
Gewicht: 726 Gramm
Umfang: 268 Seiten

Preis: 145,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 14. November in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book presents state-of-the-art research, methodologies, and applications of high performance computing for big data applications. It covers fundamental issues in Big Data research, including emerging architectures for data-intensive applications, novel analytical strategies to boost data processing, and cutting-edge applications.



Prof. Chao Wang received B.S. and Ph.D. degrees from School of Computer Science, University of Science and Technology of China, in 2006 and 2011 respectively. He has been a postdoctoral researcher in USTC from 2011 to 2013. He also worked with Infineon Technologies A.G. in 2007-2008. He is the associate editor of Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics.



Section I Big Data Architectures

Chapter 1 ¿ Dataflow Model for Cloud Computing Frameworks in Big Data

Dong Dai, Yong Chen, and Gangyong Jia

Chapter 2 ¿ Design of a Processor Core Customized for Stencil Computation

Youyang Zhang, Yanhua Li, and Youhui Zhang

Chapter 3 ¿ Electromigration Alleviation Techniques for 3D Integrated Circuits

Yuanqing Cheng, Aida Todri-Sanial, Alberto Bosio, Luigi Dilillo, Patrick Girard, Arnaud Virazel, Pascal Vivet, and Marc Belleville

Chapter 4 ¿ A 3D Hybrid Cache Design for CMP Architecture for Data-Intensive Applications

Ing-Chao Lin, Jeng-Nian Chiou, and Yun-Kae Law

Section II Emerging Big Data Applications

Chapter 5 ¿ Matrix Factorization for Drug-Target Interaction Prediction

Yong Liu, Min Wu, Xiao-Li Li, and Peilin Zhao

Chapter 6 ¿ Overview of Neural Network Accelerators

Yuntao Lu, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 7 ¿ Acceleration for Recommendation Algorithms in Data Mining

Chongchong Xu, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 8 ¿ Deep Learning Accelerators

Yangyang Zhao, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 9 ¿ Recent Advances for Neural Networks Accelerators and Optimizations

Fan Sun, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 10 ¿ Accelerators for Clustering Applications in Machine Learning

Yiwei Zhang, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 11 ¿ Accelerators for Classification Algorithms in Machine Learning

Shiming Lei, Chao Wang, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou

Chapter 12 ¿ Accelerators for Big Data Genome Sequencing

Haijie Fang, Chao Wang, Shiming Lei, Lei Gong, Xi Li, Aili Wang, and Xuehai Zhou


andere Formate