Bültmann & Gerriets
Coding mit KI
Das Praxisbuch für die Softwareentwicklung
von Michael Kofler, Bernd Öggl, Sebastian Springer
Verlag: Rheinwerk Verlag GmbH Kontaktdaten
Reihe: Rheinwerk Computing
E-Book / EPUB
Kopierschutz: kein Kopierschutz


Speicherplatz: 4 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-367-10346-1
Auflage: 1. Auflage
Erschienen am 07.11.2024
Sprache: Deutsch
Umfang: 412 Seiten

Preis: 31,92 €

31,92 €
merken
zum Hardcover 39,90 €
Biografische Anmerkung
Klappentext
Inhaltsverzeichnis

Michael Kofler hat Telematik an der TU Graz studiert und ist einer der erfolgreichsten deutschsprachigen IT-Fachbuchautoren. Zu seinen Themengebieten zählen neben Linux auch IT-Sicherheit, Python, Swift, Java und der Raspberry Pi. Er ist Entwickler, berät Firmen und
arbeitet als Lehrbeauftragter.



KI verändert, wie wir Software entwickeln. Wer die neuen KI-Helfer nicht nutzt, macht sich das Leben unnötig schwer und läuft Gefahr, den Anschluss zu verlieren. In diesem Buch erfahren Sie, was Tools wie ChatGPT oder GitHub Copilot bereits leisten können und wo ihre Grenzen liegen. Praxisnahe Beispiele zeigen Ihnen, wie Sie heute schon mit KI-Unterstützung schneller, effizienter und fehlerfreier programmieren können. Ein pragmatischer Leitfaden für alle, die wissen wollen, wie künstliche Intelligenz die Softwareentwicklung verändert.

Aus dem Inhalt:

  • Wie funktioniert Künstliche Intelligenz
  • Strukturiert programmieren mit KI
  • Debugging, Refactoring und Unit-Tests
  • Dokumentation automatisiert erstellen
  • Datenbankentwicklung und -design
  • Scripting und Administration
  • Lokale LLMs ausführen
  • Projekt-Bootstrapping mit OpenDevin
  • Mit der OpenAI-API arbeiten
  • KI-Apps und RAGs
  • Risiken, Grenzen und Ausblick




Vorwort ... 9
TEIL I. Coding mit KI-Unterstützung ... 15
1. Einführung ... 17
1.1 ... Coding per Chat ... 17
1.2 ... Die Kunst des Prompting ... 27
1.3 ... Code-Assistenten ... 35
1.4 ... Chat oder Assistent? ... 47
1.5 ... Grundlagen von Large Language Models (LLMs) ... 48
2. Pair Programming ... 63
2.1 ... Code in Funktionen strukturieren ... 64
2.2 ... Beispiel: IBAN-Validierung ... 74
2.3 ... Objektorientiert programmieren ... 81
2.4 ... Beispiel: Quiz ... 90
2.5 ... Beispiel: Sudoku lösen ... 96
3. Debugging ... 107
3.1 ... Web-Applikationen ... 108
3.2 ... App-Entwicklung ... 117
3.3 ... Entwicklung am Raspberry Pi ... 120
3.4 ... Visual Studio und VS Code ... 123
3.5 ... Fazit ... 125
4. Refactoring ... 127
4.1 ... Einführung ins Refactoring ... 128
4.2 ... Refactoring mit KI-Werkzeugen ... 128
4.3 ... Best Practices ... 141
4.4 ... Fazit ... 143
5. Software testen ... 145
5.1 ... Erzeugen von Testdaten ... 146
5.2 ... KI-gestützte Testautomatisierung ... 150
5.3 ... Testgetriebene Entwicklung mit KI ... 155
5.4 ... Arbeiten mit Abh?igkeiten ... 162
5.5 ... Optimieren von Tests ... 168
5.6 ... E2E-Tests ... 175
5.7 ... Fazit ... 179
6. Software dokumentieren ... 181
6.1 ... Inline-Dokumentation ... 183
6.2 ... Funktions- und Klassendokumentation ... 186
6.3 ... API-Dokumentation ... 190
6.4 ... Veraltete Dokumentation ... 193
6.5 ... Fazit ... 196
7. Datenbanken ... 199
7.1 ... Datenbankdesign ... 199
7.2 ... SQL-Kommandos ... 210
7.3 ... Administration ... 218
7.4 ... Client-Programmierung ... 225
8. Scripting und Systemadministration ... 227
8.1 ... Scripting ... 228
8.2 ... Beispiel: Python-Script in PHP-Code umwandeln ... 235
8.3 ... Regul? Muster ... 237
8.4 ... Systemadministration ... 241
8.5 ... Beispiel: wget-Script plus tmpfs-Konfiguration ... 249
8.6 ... GitHub Copilot und ChatGPT im Terminal aufrufen ... 254
TEIL II. Sprachmodelle lokal ausführen, fortgeschrittene KI-Tools ... 259
9. Sprachmodelle lokal ausführen ... 261
9.1 ... Die Qual der LLM-Wahl ... 262
9.2 ... GPT4All ... 267
9.3 ... Ollama ... 271
9.4 ... Open WebUI für Ollama ... 276
9.5 ... Continue ... 284
9.6 ... Ollama-API ... 287
9.7 ... Tabby ... 290
9.8 ... Fazit ... 293
10. Code automatisiert verarbeiten ... 295
10.1 ... OpenAI-API ... 296
10.2 ... Ollama-API ... 308
10.3 ... Groq-API ... 311
10.4 ... Beispiel: Code automatisiert kommentieren ... 312
10.5 ... Beispiel: von Python 2 zu Python 3 ... 321
11. Level-3-Tools: OpenHands und Aider ... 325
11.1 ... OpenHands ... 327
11.2 ... OpenHands in der Praxis ... 333
11.3 ... Aider ... 336
11.4 ... Aider in der Praxis ... 341
12. Retrieval Augmented Generation (RAG) und Text-to-SQL ... 351
12.1 ... Schnellstart RAG ... 352
12.2 ... Das viel-falter-Projekt ... 356
12.3 ... Dokumente laden ... 357
12.4 ... Index erzeugen ... 359
12.5 ... Vector-Store-Datenbanken ... 363
12.6 ... RAG-Abfragen ... 366
12.7 ... Text-to-SQL ... 371
13. Risiken und Ausblick ... 385
13.1 ... Probleme und Einschr?ungen beim Einsatz von KI-Tools ... 385
13.2 ... Beispielhaftes KI-Versagen ... 389
13.3 ... Ethische Fragen ... 400
13.4 ... Schlussfolgerungen und Ausblick ... 404
Index ... 409


andere Formate
weitere Titel der Reihe